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Introduction 
 
Let’s assume we know the correlations between some variables.  
 
(“Correlation” means (i) any probabilistic dependency, not specifically linear or Gaussian, (ii) 
population-level distributions (we’re not worried about issues of statistical inference), (iii) 
that holds within some (often implicitly assumed) kind of context.) 
 
Can we draw any causal conclusions? 
 
Linkage (cf “Reichenbach’s Principle”) 
 
If X corr Y, then X and Y must be causally linked by one or more causal paths (in which either 
X causes Y, or vice versa, or they have a common cause). 
 
In such cases, if we control for some element Z in all such paths, then X ⊥ Y | {Z}.  
 
Unlinkage 
 
If X ⊥ Y, then X and Y are not causally linked. 
 
If X ⊥ Y | {Z}, then X and Y are not causally linked by paths that do not involve any of {Z}. 
 
Bayesian Networks 
 
Now, if we assume that our set of variables is causally complete (it contains all common 
causes of variables it does contain), then these assumptions imply the “Causal Markov” and 
“Faithfulness” Conditions, and these will often suffice, given enough correlations, to 
determine a unique causal ordering of the variables. 
 
Imagine kidney disease (K) and alcohol drinking (A) are both correlated with hypertension 
(H), though neither is correlated with the other.  
 
So there must be paths linking K and A with H, but there can’t be a path linking K and A.  
 
But if H caused either K or A or both, then K and A would be correlated, which they aren’t.  
 
So the only possible causal structure is:  
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    K     A 
 
 
      H       
 
Note how causal completeness is needed here. Without it we can’t rule out the correlations 
being due to: 
 
    K       D   A 
 
 
      H  
 
Note here that it’s specifically the common causes of included variables we need to include, 
not all such causes. Omitting causes that aren’t common causes might leave us ignorant 
about the precise causal route by which one quantity X causes another Y, but this won’t 
mean we’re wrong if we conclude that X does cause Y. 
 
(Can we ever be confident that we’ve attended to all possible confounders? My impression 
is that on this economists are far less optimistic than epidemiologists and data scientists.)  
 
Probabilistic Theories 
 
Anyway, my concerns are metaphysical, not methodological. Why is it possible to infer 
causes from correlations (given causal completeness)? Amazingly, most philosophical 
theories of causation offer no answer. For all they say, “causal inference” is a mystery. 
 
A few philosophers have tried simple “probabilistic” reductive theories of causation: 
causation just is the kind of asymmetric structure implied by the Causal Markov and 
Faithfulness Conditions. In support, we might observe that these structures are just what we 
need as guides to action. 
 
But there are two good reasons for thinking that causation itself lies metaphysically deeper, 
and that the correlational patterns are merely fallible evidence of it: (1) Failures of 
Faithfulness; (2) single-case counterfactuals. 
 
Faithfulness Failures 
 
Hesslow’s famous example with Birth control pills, Pregnancy and Thromboses. 
 
     B 
        -   
 
    P      + 
      + 
       
     T 
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If the two paths cancelled out precisely, then there’d be no correlation between B and T, 
and the structure implied by the correlations alone would be as below, which by hypothesis 
is wrong.  
     B 
        -   
 
    P       
       
       + 
     T 
 
Counterfactuals 
 
Suppose the correlations show that “smoking causes cancer”. Jim smokes and gets cancer. 
Did his cancer depend causally on his smoking? Not necessarily. Again it looks as if the 
metaphysical substance of causation lies deeper than the correlational patterns that 
evidence them. 
 
Causation as Structural Dependencies 
 
A better idea is that causation consists of the kind of detailed deterministic dependencies 
represented by “structural equations” like: 
 
X = ex 
Y = aX + ey 
Z = bX + cY + ez 
 
Can’t we reorder the equations so that X, say, depends on Y and Z rather than vice versa? 
But then the exogenous terms ei won’t be probabilistically independent. 
 
So I suggest: 
 
Structure: X causes Y if and only if it is an ancestor of Y in a recursive structure of 
deterministic dependencies Xi = F(X1, . . . Xi-1, ei) with independent exogenous terms. 
 
Note that we don’t have to assume linearity, nor real-valued variables. 
 
If we assume Structure, then it is trivial to derive the Causal Markov Condition. For variables 
to be correlated, they need to be linked in the equations. 
 
But the Faithfulness Condition isn’t guaranteed. That’s just what we want. As a rule of 
thumb, independency indicates unlinkage. But nothing in principle excludes misleading 
independencies due to freaky cancelling out.  
 
Descending to the full set of structural dependencies also allows a natural account of single-
case counterfactuals like If Jim hadn’t smoked, he wouldn’t have got cancer. 


