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ABSTRACT

Peter Urbach has argued, on Bayesian grounds, that experimental randomization
serves no useful purpose in testing causal hypothesis. I maintain that he fails to
distinguish general issues of statistical inference from specific problems involved in
identifying causes. I concede the general Bayesian thesis that random sampling
is inessential to sound statistical inference. But experimental randomization is a
different matter, and often plays an essential role in our route to causal conclusions.
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I INTRODUCTION

Peter Urbach has argued that randomized experiments serve no useful purpose
in testing causal hypotheses (Urbach [1985], Howson and Urbach [1989]).' In
this paper I shall show that he misunderstands the role of randomization in
this context, as a result of failing to separate issues of statistical inference
sufficiently clearly from problems about identifying causes.

Urbach is a Bayesian, and in consequence thinks that random sampling is
unimportant when inferring objective probabilities from sample data (Urbach
[1989]). I am happy to concede this point to him. But I shall show that
experimental randomization is a quite different matter from random sampling,
and remains of central importance when we wish to infer causes from objective
probabilities.

1 Of the two authors of this book. Urbach is responsible for the sections on randomized
experimentation.
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This is a topic of some practical importance. Randomized experiments, of the
kind Urbach thinks unhelpful, are currently extremely popular in medical
research circles. I agree with Urbach that this medical enthusiasm for
randomization is dangerous and needs to be dampened. But this is not because
experimental randomization is worthless, which it is not, but rather because it
is often unethical, and because the conclusions it helps us reach can usually be
reached by alternative routes, albeit routes of greater economic cost and less
epistemological security. It would be a pity if Urbach's spurious methodologi-
cal objections to randomized experiments deflected attention from their real
ethical deficiencies.2

I shall proceed by first giving a simple example of the kind of problem that
a randomized experiment can solve. After that I shall consider Urbach's
arguments.

2 AN EXAMPLE

Imagine that some new treatment (T) is introduced for some previously
untreatable disease, and that it turns out that the probability of recovery (R) in
the community at large is greater among those who receive T than among
those who do not:

Prob(R/T)>Prob(R/-T). (1)

Such a correlation3 is a prima-facie reason to think T causes R. But perhaps
this correlation is spurious: perhaps those who receive the treatment tend to be
younger (Y), say. and so more likely to recover anyway, with the treatment
itself being irrelevant to the cure. Still, we can easily check this: we can
consider young and old people separately, and see whether recovery is still
correlated with treatment within each group. Is

Prob(R/TandY)>Prob(R/-Tand Y), and (2)

Prob(R/T and - Y) > Prob(R/ - T and - Y)?

If neither of these inequalities holds—if it turns out that T makes no
probabilistic difference to R either among young people, or among old people—
then we can conclude that T doesn't cause R, and that the original correlation

For discussion of the ethics and methodology of randomized medical trials, see the symposia in
the journal of Medical Ethics, 9 [1983]. pp. 59-93. and the journal of Medicine and Philosophy. 11
[1986], pp. 297-404. For a historical account of the surprisingly recent origins of
experimental randomization, see Hacking [1988].
The standard technical definition of'correlation' presupposes quantitative variables. However,
equation (1) yields an obvious analogy for qualitative factors. In this paper I shall stick to
qualitative factors, in the interests of simplicity, but the argument generalizes to the
quantitative case.
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(1) was due to the treatment being more probable among young people, who
recover anyway, than among old.

On the other hand, if the inequalities (2) do hold, we can't immediately
conclude that T does cause R. For perhaps some other confounding cause is
responsible for the initial T-R correlation (1). Perhaps the people who get the
treatment tend to have a higher level of general background health (H),
whether or not they are young, and recover more often for that reason. Well,
we can check this too: given some index of general background health, we can
consider healthy and unhealthy people separately, and see whether the
treatment makes a difference within each group. If it doesn't, then the initial
T-R correlation is exposed as spurious, and we can conclude that T does not
cause R. On the other hand, if the treatment does still make a difference within
each group . . .

By now the problem should be clear. Checking through all the possible
confounding factors that may be responsible for the initial T-R correlation will
be a long business. Maybe those who get the treatment generally have some
chemical in the drinking water; maybe their doctors tend to be more
reassuring; maybe . . .

A randomized experiment solves the problem. You take a sample of people
with the disease. You divide them into two groups at random. You give one
group the treatment, withohold it from the other (that's where the ethical
problems come in), and judge on this basis whether the probability of recovery
in the former group is higher. If it is, then T must now cause R, for the
randomization will have eliminated the danger of any confounding factors
which might be responsible for a spurious correlation.

3 RANDOMIZED EXPERIMENTS HELP WITH CAUSES, NOT
PROBABILITIES

In this section I want to explain in more detail exactly why experimental
randomization is such a good guide to causation. But first a preliminary point.
In the last section I ignored any problems which may be involved in
discovering the kind of objective probabilities which are symbolized in
equations (1) and (2). This was not because I think there aren't any such
problems, but rather because I think experimental randomization has nothing
to do with them. Experimental randomization does its work after we have
formed judgements about objective probabilities, and at the stage when we
want to say what those probabilities tell us about causes.

Let me now try to explain exactly why experimental randomization is such a
good guide to causes, if we know about objective probabilities. The notion of
causation is of course philosophically problematic in various respects. But here
we need only the simple assumption that a generic event like the treatment T is
a cause of a generic event like the recovery R if and only if there are contexts
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(perhaps involving other unknown factors) in which T fixes an above-average,
single-case objective probability for R. In effect, this is to say that the treatment
causes the recovery just in case there are some kinds of patients in whom the
treatment increases the chance of recovery.4

Once we have this assumption about causation, we can see why experi-
mental randomization matters. For this assumption implies that if Prob(R/T) is
greater than Prob(R/ — T)—if the objective probability of recovery for treated
people in the community at large is higher than that for untreated people—
then either this is because T itself causes R, or it is because T is correlated with
one or more other factors which cause R. In the first case the T-R correlation
will be due at least in part to the fact that T itself fixes an above-average, single-
case probability for R; in the second case the T-R correlation will be due to the
fact that T is correlated with other causes which do this, even though T itself
does not. The problem we faced in the last section was that a difference between
Prob(R/T) and Prob(R/ —T) in the community at large does not discriminate
between these two possibilities: in particular it does not allow us to eliminate
the second possibility in favour of the hypothesis that T does cause R.

But this is precisely what a randomized experiment does. Suppose that
Prob(R/T) and Prob(R/ - T) represent the probabilistic difference between the
two groups of patients in a randomized experiment, rather than in the
community at large. Since the treatment has been assigned at random—in
the sense that all patients, whatever their other characteristics, have exactly
the same objective probability of receiving the treatment T—we can now be
sure that T is not itself objectively correlated with any other characteristic that
influences R. So we can rule out the possibility of a spurious correlation, and be
sure that T does cause R.5

A useful way to think of experimental randomization is as a way of switching
the underlying probability space. The point of experimental randomization is
to ensure that the probability space from which we are sampling is a good
guide to causes. Before the experiment, when we were simply getting our
probabilities from survey statistics, we were sampling from a probability space
in which the treatment might be correlated with other influences on recovery;
in the randomized experiment, by contrast, we are sampling from a probability
space in which the treatment cannot be so correlated.

4 Some philosophers hold that T causses R iffT increases the chance of R in all contexts. (C/. Eells
and Sober [1983]: Eells 11987]: Humphreys [1989): Cartwright [1989]. Ch. 4.) While this
assumption of 'causal unanimity' is certainly required by many familiar quantitative linear
causal models, and is no doubt satisfied in some real-world cases. I see no reason for building it
into our thinking about causation. Apart from anything else, this assumption would make it
very difficult to explain why a non-spurious positive correlation is in general a valid sufficient
(though not necessary) indicator of causation. (For further arguments against the assumption
of causal unanimity, see Dupre [1984. 1990].)

5 For a more detailed account of why causation follows from a T-R correlation, plus probabilistic
independence of T from R's other causes, see Papineau [1985. 1989].
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This way of viewing things makes it clear that experimental randomization
is nothing to do with statistical inferences from finite sample data to objective
probabilities. For we face the problem of statistical inference when performing
a randomized experiment as much as when conducting a survey: what do
the sample data tell us about population probabilities like Prob(R/T) and
Prob(R/ —T)? But only in a randomized experiment does a solution to this
problem of statistical inference allow us to draw a secure conclusion about
causes.

I shall return to these points below. But first it will be helpful to comment on
one particular claim made by Urbach. For the moment we can continue to put
issues of statistical inference to one side.

7 RANDOMIZED EXPERIMENTS HELP WITH UNKNOWN NUISANCE
VARIABLES

One of Urbach's main reasons for denying that randomization lends superior
objectivity to causal conclusions is that the decision about which factors to
'randomize' will inevitably depend on the experimenter's personal assump-
tions about which 'nuisance variables' might be affecting recovery (Urbach
[1985], pp. 265, 271; Howson and Urbach [1989], pp. 150-2).

This seems to me to betray a misunderstanding of the point of randomized
experiments.6 Randomized experiments are important, not because they help
with the nuisance variables we think we know about, but because they enable
us to cope with all those we don't know about. If we can identify some specific
variable N which might be affecting recovery, we can deal with the danger
without conducting a randomized experiment. Instead, we can simply attend
to the probabilities conditional on N in the community at large, as in (2) above,
and see whether T still makes a difference to R among people who are alike in
respect of N. It is precisely when we don't have any further ideas about which
Ns to conditionalize on that randomized experiments come into their own. For
when we assign the treatment to subjects at random, we ensure that all such
influences, whatever they may be, are probabilistically independent of the
treatment.

If we had a complete list of all the factors that matter to the probability of
recovery, we could bypass the need for experiment, and use the probabilities
we get from non-experimental surveys to tell us about causes. But, of course,
we rarely have such a complete list, which is why randomized experiments are
so useful.

Urbach writes (Urbach [1985] p. 271; Howson and Urbach [1989] pp. 153,
253) as if the alternative to a randomized experiment were a 'controlled'
experiment, in which we explicitly ensure that the nuisance Ns are 'matched'
across treatment and control group (for exmple, we might explicitly ensure

6 A misunderstanding which is also present in some of the comments on Urbach in Mayo [1987].
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that the two groups have the same distribution of ages). But this is a red
herring. As I have said, if we know which Ns to match, then we don't
need to do an experiment which matches them; indeed we don't need to do an
experiment at all. Instead we can simply observe the relevant multiple
conditional probabilities in the community at large. (If we like, we can think
of this as using nature's division of the treatment and control groups into
subgroups matched for the Ns.) It is only when we don't know which Ns to
match that an experiment, with its potential for randomization, is called for.7

5 BAYESIANS VERSUS CLASSICISTS ON STATISTICAL INFERENCE

I suspect that Urbach has been led astray by failing to distinguish the specific
question of experimental randomization from general issues of statistical
inference. In his article on 'Randomization and the Design of Experiments'
[1985] he explains that by 'the principle of randomization' he means
(following Kendall and Stuart [1963], Vol. 3, p. 121):

Whenever experimental units (e.g. plots of land, patients, etc.) are assigned to
factor-combinations (e.g. seeds of different kinds, drugs, etc.) in an experiment,
this should be done by a random experiment using equal probabilities.

This is the kind of experimental randomization we have been concerned with
in this paper so far. But on the next page of the article Urbach says:

The fundamental reason given by Fisher and his followers for randomizing is that
it supposedly provides the justification for a significance test. ([1985], p. 259)

As a Bayesian about statistical inference, Urbach disagrees with Fisher and
other classical statisticians on the importance of significance tests, for reasons
I shall shortly explain. And on this basis he concludes that experimental
randomization is unimportant. But the inference is invalid, for Urbach is
wrong to suppose that the rationale for experimental randomization is to
justify significance tests. What justifies significance tests are random samples.
But these are a different matter from experimental radnomization.

In this section I shall briefly explain why Bayesians like Urbach disagree
with classical statisticians like Fisher about the importance of significance tests
and therefore of random sampling.8 In the next section I shall explain why this
dispute about random sampling is irrelevant to questions of experimental
randomization.
7 Urbach also observes that randomization provides no guarantee that the intuitively salient

aspect of the treatment is in fact the casually efficacious aspect (Urbacb [1985]. p. 264: Urbach
and Howson [1989], p. 149). On this point, which provides the rationale for double blinds and
placebos. I fully agree. Still, randomized experiments do at least show that recovery is caused by
something the experimenter does to the treated subjects, rather than something which merely
happens to be correlated with the treatment in the community at large.

8 My remarks in this section agree closely with Urbach [1989]. See also Johnstone [1989].
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Suppose we want to evaluate some stochastic hypothesis H, about the
probabilities of outcomes from some objective probability space, on the basis of
sample statistic E. Classicists and Bayesians give different accounts of how this
should be done.

The classical account is in terms of significance tests. Classicists say we
should reject H if E falls in the 'rejection region', that is, if E falls in some chosen
region with a low probability (normally 5 per cent) of containing E if H is true.
The rationale for this strategy is that the objective probability of erroneously
rejecting H when it is true (a 'type I error) is then itself only 5 per cent—since
the rejection region is precisely designed to have a 5 per cent probability of
containing E // H is true.

Bayesians, by contrast, invoke Bayes' theorem. They say that when we
observe E, we should increase the personal probability we attach to H in
proportion to our prior personal probability for E, given H, and in inverse
proportion to our prior personal probability for E: that is, H should be favoured
to the extent its acceptance would have increased our expectation of E.

Classicists dislike the Bayesian approach because it invokes personal
probabilities. They claim that the classical account of significance tests (of type
I errors, anyway) appeals only to the objective probability that H implies for E.

But in fact it's not quite that simple, and this is where the issue of random
sampling comes in. A stochastic hypothesis H will only imply an objective
probability for a sample statistic E if it is conjoined with some assumption about
the probabilities that the sampling mechanism implies for different kinds of
samples. For without such an extra assumption there is no way of getting from
the objective probabilities specified by H to an objective probability for the
sample statistic E. The normal form of the requisite assumption is that the
sample displaying E is drawn from the probability space in an objectively
random way, that is, all individuals, whatever their characteristics, have an
equal objective probability of being sampled.

So classicists need an assumption of random sampling (or some alternative
assumption about sampling probabilities) in order to derive objective probabili-
ties for sample statistics. From the Bayesian point of view, by contrast, the
requirement of random sampling is otiose. A Bayesian statistical inference
depends only on your personal probability for E, given H, and not on whether
this value rests entirely on objective probabilities. As a Bayesian you might
assign a given personal probability to E, given H, because you believe an
assumption of objective random sampling. But you might equally well have
the same personal probability for E, given H, not because you assume random
sampling, but simply because you lack any reason to think that the sample
displaying E is unrepresentative in any particular way. And in both cases,
argue the Bayesians, you will have an equally good basis for a statistical
inference.

Urbach adds a specific criticism of the classical theory. He points out that it
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has difficulty with cases where the sample displaying E is randomly generated,
but we have reason to believe post hoc that it is unrepresentative in some
particular way (Urbach [1989], pp. 146, 162-3). Suppose we are testing the
hypothesis H that the average height of children in a school is 5' or more. We
sample at random, but by chance end up with a sample containing only
children from the youngest class, giving a mean sample height of 3' 2".
Common sense would say that this is a freak sample and so no basis for
rejecting H. The classical theory, however, seems to imply that we ought to
reject H, since the objective probability of getting such a low sample mean,
given H and random sampling, was very small.9 Bayesians, on the other hand,
can reason that a sample mean in this range, given H and given that the sample
is unrepresentatively young, is highly probable, and so can avoid rejecting H
on the basis of E.

6 TWO STEPS TO CAUSAL CONCLUSIONS

As I said earlier, I am happy to concur with Urbach about statistical inference. I
have no dispute with his thesis that classical insistence on using random
samples for statistical inference is both unnecessary and misguided. My
disagreement with Urbach is only that this is nothing to do with the use of
randomized experiments to establish causal claims.

To see what is going on, let us once more divide the question of whether
some treatment T causes R into two distinct stages. First, there is the question
of whether the conditional probabilities Prob(R/T) and Prob(R/ —T) in the
underlying probability space are unequal. If they are, the second question then
arises: is this because T causes R?

The first question is a question of statistical inference. We want to get from
the frequencies with which R, T, and — T are found together in our sample to a
conclusion about the underlying probabilities of R given T and not —T. This is
the point at which Urbach takes issue with the classicists: they say the samples
in question must be generated randomly, Urbach denies this.

But this leaves the second question untouched. Suppose that we conclude,
either on Bayesian or on classicial grounds, that the underlying probability of
R is different given T and not —T. Whichever way we reached this conclusion,
we will still face the further question: is this difference due to T causing R? For,
whether we are Bayesians or classicists, there remains the possibility that T is
objectively correlated with R, but not because it causes R itself, but because it is
objectively correlated with something else which does. And this is where I say

9 Classicists can argue that a practice of 'stratified sampling', which builds up an overall sample
by sampling separately from each class in the school, would be less likely to yield a type I error
than simply sampling the whole school. But. as Urbach insists, this doesn't answer the
objection. The problem with the post hoc unrepresentative non-stratified sample is not that it is
an instance of a general practice which yields lower significance levels than stratified sampling,
but that in this particular case it is telling us to reject when we manifestly shouldn't.
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a randomized experiment can help. For, as I put it earlier, a randomized
experiment will switch the underlying probability space to one in which T
definitely isn't objectively correlated with any such other causes.

So there are two quite different ways in which randomness can enter into the
kind of investigation at issue. First (random sampling), the overall sample can
be randomly drawn—that is, every individual can have the same objective
probability of entering the overall sample. Second (randomized experimen-
tation), the treatment can be randomly assigned—however the sample is
generated, all sampled individuals can have the same objective probability of
getting the treatment. These two notions are two-way independent. Even if we
insist, with the classicists, on random samples when surveying a non-
experimental population to estimate the underlying probabilities, this does not
mean that the treatment has been randomly assigned (and so yields no basis
for concluding that a T-R correlation indicates causation). Conversely, even a
Bayesian, like Urbach, who is prepared to draw statistical inferences from non-
random samples, still has every reason to require that the treatment be
randomly assigned (since even Bayesians need this further information to
move from correlations to causes).

At first sight this latter notion, of a random assignment of a treatment within
a non-random sample, might seem puzzling. But this is a familiar, indeed
normal, situation in medical research. The sample of patients suffering from
the disease is gathered relatively haphazardly. But once this sample has been
gathered, then every care is taken to ensure that all its members have the same
objective probability of getting the treatment. Urbach maintains, and I concur,
that the initial non-randomness of the sample is no barrier to our using it to
estimate objective conditional probabilities. But what he fails to recognize is
that the subsequent randomized assignment of the treatment is crucial to our
drawing causal conclusions from these conditional probabilities.

7 CAUSAL INFERENCES IN BAYESIAN TERMS

Bayesians may remain puzzled. I say experimental randomization of the
treatment is relevant to the inference from probabilities to causes, rather than
to the prior inference from statistics to probabilities. But still, this latter
inference, from probabilities to causes, ought itself to be representable, like all
scientific inferences, in Bayesian terms. And, once we do so represent it, then
won't the requirement of objective randomization of the treatment be exposed
as otiose, just as was the classicist's demand for objective random sampling?

No. We can indeed represent the inference from randomized-experimental
probabilities to causes in Bayesian terms.10 However, when we do so, it comes

10 For two other attempts to justify randomization in Bayesian terms, neither of which, however,
seems to me to distinguish sufficiently sharply between sampling and causal issues, see Rubin
[1978] and Swijtink [1982].
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out as the extreme case of a deductive inference, and indeed a deductive
inference which goes through precisely because of the randomization of the
treatment. Think of the inference in question as follows. The hypothesis H is
that T causes R. The evidence E is that the objective Prob(R/T) is greater than the
objective Prob(R/ — T) when the treatment is randomized. Given this H and this E,
the prior personal probability of H, given E, is one, since the randomization
ensures that the probability of E is zero on any hyhpothesis other than H. So, if
we knew E, then, by Bayesian conditionalization, we could be certain of H.
(I am not forgetting the problem of getting to this E from finite sample data.
But for the moment we are concerned specifically with the Bayesian logic of
moving from this E to this H.)

This argument simply transposes a line of reasoning outlined in Section 3
above into Bayesian terms. In Section 3 I made a minimal assumption about
causation, namely, that for T to cause R, there must be some contexts in which
T fixes a higher than average single-case probability for R. It followed from this
that there are only two possibilities consistent with an objective correlation
between T and R: either T itself causes R, or T is objectively correlated with one
or more other factors which are relevant to the single-case probability of R. So
if we can be sure that T is not objectively correlated with any other possible
causes of R, which is what experimental randomization tells us, then we can be
sure that an objective T-R correlation means that T causes R.

One advantage of putting this argument in Bayesian terms is that it shows
why randomized experimentation is not dispensable when inferring causes
from probabilities, in the way that random samples arguably are when
inferring probabilities from sample statistics. When we infer probabilities from
sample statistics, a non-random sample and a random sample can yield just
the same conditional personal probability for statistic E given the H under
investigation, and so can underpin just the same statistical inference. But
when we infer causes from probabilities, a non-experimental survey investiga-
tion certainly does not make it reasonable to give the same zero conditional
personal probability to the claim (E) that T is correlated with R, on the
hypothesis (H) that T does not cause R, that we can give it after a randomized
experiment: even if you've got no special reason to suspect the presence of any
confounding influences in the community at large, this is not the same as
being certain that there aren't any, as you can be after the randomization of T
in an experiment.

8 POST HOC UNREPRESENTATIVENESS IN A RANDOMIZED
EXPERIMENT

Distinguishing the two inferential steps involved in inferences to causes
enables us to deal with a difficult case raised by Urbach (Urbach [1985], p.
260; Urbach and Howson [1989], pp. 151-2). Suppose we notice, after
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conducting a randomized experiment, a relevant difference between the
treatment and control samples. For example, suppose that we notice that the
experimental subjects who received the treatment were on average much
younger than those who did not. Common sense tells us that we shouldn't
then take a difference in recovery rates to show that the treatment is
efficacious. But advocates of randomized experiments, like myself, seem to be in
danger of denying this obvious truth, since we claim that randomization is a
sure-fire guide to causal conclusions.

I agree that, if you think age might matter to recovery, then you would be
foolish to infer the efficacy of T solely from a difference in recovery rates
between a young group who get T and an old group who do not, however
much the assignment of the individuals in the sample to the T and not —T
groups was randomly arranged. However, I don't think that this counts
against my defence of experimental randomization.

Once more, we need to distinguish two steps involved in inferring causes
from finite sample data. Suppose a slapdash researcher—let us call him
Quentin Quick, say—were to infer the efficacy of the treatment from the
observed difference in recovery rates in the finite sample in question. On my
analysis, Quentin has made a two-stage inference. First, Quentin has inferred
objective population probabilities from sample statistics. Second, he has
inferred causes from those objective probabilities. I still want to maintain, in
line with my overall argument, that this second inference, from probabilities to
causes, is quite infallible, in virtue of the randomization of the treatment in the
experiment at hand. Quentin's error lies, rather, in his first step, from the
sample data to objective probabilities, and it is this invalid first step that is
responsible for his flawed eventual causal conclusion.

My point is simply that, if we were to grant Quentin his intermediate premise,
that there is an underlying objective T-R correlation, then his inference to the
efficacy of T would be quite impeccable. After all, if T did not cause R, how could
there be such a correlation (an objective correlation in the underlying
probability space, remember, which will show up, not just in this sample, but
in the long-run frequencies as the randomized experiment is done time and
again) given that the randomization will ensure that all other causes of R are
probabilistically independent of T in the long run?

However, as I said, Quentin's prior inference, from the sample data to
probabilities, is fallacious. Indeed, we have already considered an entirely
analogous inferential fallacy, in our earlier discussion of Bayesian versus
classical accounts of statistical inference. Quentin's mistake is simply a variant
of the case Urbach uses to argue against the classical theory. Urbach's
argument, recall, was that classicists have trouble explaining what is wrong
with significance tests based on random samples which we can see to be
unrepresentative post hoc. The case at hand is an illustration. Assuming
Quentin's sample was randomly generated (though remember that this is an
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extra assumption, over and above the random assignment of the treatment),
then it was objectively unlikely that he would have found a statistically
significant sample correlation, given the hypothesis that T and R are
objectively uncorrelated. So the classical theory advises Quentin to reject this
hypothesis. But of course Quentin shouldn't reject this hypothesis on his
evidence, for he can see that the freakishness of the sample is as good an
explanation of the observed sample correlation as the alternative hypothesis
that T and R are objectively correlated. And this, as before, supports the
Bayesian over the classical theory of statistical inference, since the Bayesian
theory, unlike the classical theory, can happily accommodate this sensible
reasoning.

Still, all this relates to Quentin's first inferential step, and is irrelevant to my
claims about his second step. To repeat my central point, I agree with Urbach
that the classical insistence of random sampling stems from a bad theory of
statistical inference, and in particular may prevent us from explaining what is
wrong with someone who infers an objective correlation from a manifestly
unrepresentative sample. However, we shouldn't conclude from this that the
randomization of the treatment isn't needed for causal inferences, for randomiza-
tion of treatment is crucial if we want to decide whether an objective
correlation indicates a real causal connection.

9 DOING WITHOUT RANDOMIZATION

At the beginning of this paper I observed that there are often ethical objections
to randomized experiments in medicine. The standard response by defenders of
such experimentation is that the benefits of medical knowledge outweigh the
ethical drawbacks of experimentation.

This response, however, assumes that randomized experiments are the only
way to establish causal conclusions in medicine. So far in this paper I have
been concerned to show that randomized experiments are a good way to find
out about causes. But it is also a corollary of my analysis that randomized
experiments are not the only way to find out about causes. It will be worth
briefly explaining why, in the interests of making it clear that the ethical
dangers of random experimentation are not always necessary for the good of
medical knowledge.

As we have seen, the virtue of randomized experiments, as opposed to non-
experimental surveys, is that they ensure that any further unidentified
nuisance variables are uncorrelated with the treatment variable. It follows,
then, that surveys will do just as well as randomized experiments whenever we
are able to identify all those influences on recovery which are correlated with
treatment.

In general this won't be an easy task. But note that it will certainly be a lot
easier than identifying all influences on recovery tout court. There will
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inevitably be a large number of Ns that affect the probability of recovery from
any given medical ailment to some extent. But it is important that by no means
all of these Ns will themselves be objectively correlated with the treatment T,
and so not all of them will be capable of producing a spurious correlation. It is
specifically Ns which are correlated with T which threaten this, and it is
specifically these possibly confounding Ns that experimental randomization
guards against. So if only we can identify those specific Ns which are correlated
with T, we will be in a position to dispense with experimental randomization.

What is more, it is arguable that any given N, like age, will only be
probabilistically associated with T in the general community if there is some
explanation for this association (such as that doctors are more assiduous in
treating younger people, or that younger people tend to have younger doctors
who tend to know more about new drugs, or some such). So if only we can
identify the limited number of influences on recovery which could conceivably
have some connection with T, then we can ignore the rest. For then the
unknown Ns will be uncorrelated with T, and our survey will be as good as a
randomized experiment, namely, a sure-fire route to a causal conclusion.

Randomized experiments have the advantage of releasing us from the
responsibility of identifying every N which is correlated with T. But this is not
an impossible responsibility, and when there are ethical objections to
randomized experiments we should try to shoulder it.' '

1' I would like to thank Peter Urbach for many helpful comments on this paper.
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