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A B S T R A C T

Causation is a macroscopic phenomenon. The temporal asymmetry displayed by cau-
sation has no counterpart in the fundamental dynamics of the microscopic world. So
causation must somehow emerge from the underlying dynamics, along with other mac-
roscopic phenomena like entropy increase and the arrow of radiation. In this paper I
shall offer an account of causation that accounts for this emergence. I shall show how
macroscopic events fall into lawlike patterns that are subject to the random influences
of microscopic processes. It is the probabilistic independence of these random influen-
ces that constitutes these laws as temporally asymmetric and causal. I shall approach
these issues by considering ‘causal inference’ techniques that allow causal relations to
be inferred from sets of observed correlations. I shall show that these techniques are
best explained by a reduction of causation to structures of equations with probabilisti-
cally independent exogenous terms. This exogenous probabilistic independence
imposes a recursive order on these equations and a consequent distinction between de-
pendent and independent variables that lines up with the temporal asymmetry of
causation.

1 . I N T R O D U C T I O N
Causation is a macroscopic phenomenon. The temporal asymmetry displayed by
causation has no counterpart in the fundamental dynamics of the microscopic world.
So causation must somehow emerge from the underlying dynamics, along with other
macroscopic phenomena like entropy increase and the arrow of radiation.

In this paper I shall offer an account of causation that accounts for this emer-
gence. I shall show how macroscopic events fall into lawlike patterns that are subject
to the random influences of microscopic processes. It is the probabilistic indepen-
dence of these random influences that constitutes these laws as temporally asymmet-
ric and causal.

I shall approach these issues by considering “causal inference” techniques that al-
low causal relations to be inferred from sets of observed correlations. I shall show
that these techniques are best explained by a reduction of causation to structures of
equations with probabilistically independent exogenous terms. This exogenous prob-
abilistic independence imposes a recursive order on these equations and a
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consequent distinction between dependent and independent variables that lines up
with the temporal asymmetry of causation.1

Philosophers in the tradition of David Lewis have sought in various ways to ac-
count for the temporal asymmetry of causation in terms of the “asymmetry of over-
determination.”2 These accounts are consonant with the analysis that I shall offer,
but from my perspective they start the story too late. The “asymmetry of over-
determination” is not something to be assumed, but a macroscopic phenomenon
that itself demands explanation. My analysis will have the virtue of displaying the
Lewisian asymmetry as a consequence of the asymmetric nature of causation.

2 . E X P L A I N I N G C A U S A L I N F E R E N C E
For over a hundred years nonexperimental scientists have been inferring asymmetri-
cal causal conclusions from correlational data. Curiously, none of the main philo-
sophical theories of causation cast any light on why these techniques work. What in
the nature of causation allows such inferences to proceed? As far as I know, nobody
working on counterfactual, or regularity, or process, or dispositional theories of cau-
sation so much as asks this question.

The only thinkers who have addressed this issue are those philosophers in the
older minority tradition of “probabilistic theories” of causation. These theories at-
tempt to explain the inference techniques by reducing causal relationships directly to
correlational ones. In the middle of the last century Hans Reichenbach (1956), I.J.
Good (1961-62) and Patrick Suppes (1970) all offered variations on this theme, and
more recently Wolfgang Spohn (2001), Clark Glymour (2004), Gerhard Schurz and
Alexander Gebharter (2016), and David Papineau (1992, 2001) have drawn on the
analysis of “Bayesian networks” to develop more sophisticated versions of this strat-
egy. However, as I shall show, this tradition ties causation too closely to correlations.
Because of this, it cannot cope with “faithfulness failures” where correlations are mis-
leading about causal links, nor is it able explain the relationship between probabilistic
causal connections and single-case actual causation.

My strategy in this paper will be to offer a different reductive analysis. The idea
goes back to H.A. Simon and others in the 1950s and 60s (Simon 1953; Blalock
1964). It seeks to reduce causation to underlying structural equations with probabil-
istic independent exogenous terms rather than directly to surface correlations. While
this idea is often enough aired by practising nonexperimental scientists, it has been
largely ignored by philosophers (though see Cartwright 1989 and Hausman 1998). I
shall show that this approach holds the key both to the success of the correlational
inferential techniques and to the way that causation is a temporally asymmetric mac-
roscopic phenomenon.

Much recent work on causation characterises itself as adopting an
“interventionist” approach. This term covers a number of different ideas, and their
detailed relation to my own analysis will have to be left to further work. By and large,
though, the general interventionist programme is consonant with my approach. My
attitude to this programme is not that it is mistaken, but that it does not go deep
enough.
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In effect, I see the interventionist programme as falling between the two stools of
(a) leaving the causal inference techniques unexplained and (b) reducing causes di-
rectly to correlations in the style of probabilistic theories. Thus James Woodward in
his Making Things Happen (2003, 51) specifies that X is a (total) cause of Y just in
case the probability of Y would change if X were changed by an intervention—where
an intervention is defined as a way of altering X that is statistically independent of
the other causes of Y. Now, by so equating causation with correlation under interven-
tion, Woodward’s formula does forge some link between correlations and causes,
and thereby casts some light on the causal inference techniques (Hausman and
Woodward 1999). But it cannot fully explain how causes can be inferred from corre-
lations alone, since it appeals circularly to causal conditions in defining an
“intervention.” At the same time, precisely because it ties causation directly to corre-
lation, it is doubtful whether Woodward’s approach copes with faithfulness failures
any better than the reductive probabilistic theories (Strevens 2007, 2008; Woodward
2008). My intention in this paper is to do better—not by dismissing the interven-
tionist approach, but by offering a fuller analysis that can account for its successes.

3 . B R I D G E P R I N C I P L E S
Let me quickly illustrate the kind of causal inference techniques at issue. Suppose
that good examination results (E) are positively correlated3 with attendance at pri-
vate rather than state schools (S), but this correlation disappears when we control
for parental income (P)—the correlation is screened off by P, as it is said, in that E is
no longer more likely given S once we hold P fixed. We conclude that, despite the
prima facie indication that private schools causally influence examination results, this
correlation is in fact “spurious” in the sense that schools S don’t affect examination
results E after all; rather both are effects of the common cause parental income, as in
the following causal directed acyclic structure (“DAS” henceforth):4

Correlational-to-causal inferences like these are natural enough, but they do not
wear their rationale on their sleeve. Recent work in the tradition of “Bayesian
networks” has regimented the principles behind them. (See, for example, Spirtes
et al. 1993, Pearl 2000, Peters et al. 2017.) In this section and the next, I shall articu-
late these principles and explain their inferential power, taking their acceptability as
given. Once we are clear about how they work, we can then turn to questions about
their truth and metaphysical status.

It will be convenient for what follows to say that two variables X and Y are caus-
ally linked if X causes Y (possibly indirectly via intermediaries), or Y causes X (again
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possibly indirectly), or X and Y have a (possibly indirect) common cause—but not if
X and Y only have a common effect.

One issue that arises at this point is what is meant by saying that one generic vari-
able “causes” another, in the sense in which, say, parental income might cause exami-
nation results or smoking might cause lung cancer. Presumably such claims are some
kind of generalization over particular cases in which definite values of these variables
bear some more specific relation to each other. But how to fill this out is by no
means obvious. Still, it will be convenient for our purposes to take the generic notion
of cause as read for the time being. By the end of the paper I will be able to explain
it.

Inferring causes from correlations hinges on two kinds of principles—I shall call
them “bridge principles” henceforth. On the one hand are a pair of principles licens-
ing moves from correlations to causes, and on the other a pair licensing moves from
absence of correlation to absence of causes. (The former pair are often presented to-
gether as the “Causal Markov Condition” and the latter pair together as the
“Faithfulness Condition.” But it will be more illuminating to unpack them as
follows.)

Let us start with the pair of correlation-to-cause principles. First and simplest is
what I shall call the Linkage Principle:

(1) If two variables are correlated, then they must be causally linked.

And to this can be added a Conditional Linkage Principle:

(2) If two correlated variables remain conditionally correlated after we control
for other variables fXg, then they must be casually linked by one or more
paths that do not go via fXg.

These two principles specify that correlations always indicate a causal link: correlated
variables must either be related as cause and effect or they must have a common
cause. Moreover, correlations that persist even after controlling for other variables in-
dicate casual links that bypass those controlling variables.5

Now for the converse no-correlation-to-no-cause principles.
The Unlinkage Principle says:

(3) If two variables are uncorrelated, then they are not causally linked.

And a further Conditional Unlinkage Principle says:

(4) If two correlated variables are screened off by other variables fXg, then
they are not causally linked by any chains of variables that do not contain any
of fXg.

These two principles now tell us that variables that are not correlated are not causally
linked: they can’t cause each other or have a common cause. Moreover, two variables
that cease to be correlated when we control for other variables cannot be linked in
any ways that bypass those controlling variables.6
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Together these principles suffice to fix a causal order among variables displaying a
sufficiently rich set of correlations.

Of course, they don’t fix a causal order among any set of correlated variables. To
revert to our original schools (S)-examinations (E)-parental income (P) example,
the pairwise correlations between all three variables, plus the screening-off of the S-E
correlation by P, is in itself consistent, not only with the possibility suggested earlier,
where P causes both S and E, as in Diagram 1, but also with

and

Still, this indeterminacy would be resolved if we were given some further variable
A that were correlated solely with S and another B that were correlated solely with
E. Then the only causal structure consistent with the bridge principles would be

This illustrates a result that can be proved in full generality. Whenever the correla-
tions between some set of variables do not allow the bridge principles to fix their
causal relationships uniquely, there will always be possible correlations involving fur-
ther possible variables that will so suffice. (Theorem 4.6, Spirtes et al. 1993, 94.)

Let me observe at this point that the bridge principles fix causal order, when they
do, without resorting to any information about the temporal ordering of the relevant
variables. Yet we can expect that, when they do so fix causal order, the variables identi-
fied as causes will in reality always precede their effects in time. If this is so, this must
be because this temporal ordering of variables is implicit in the empirical correlations
displayed by causally related sets of variables. The arrangement of correlations is itself
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asymmetrically distributed in time. This augurs well for the project of understanding
how the temporal asymmetry of causation can emerge in a world with a temporally
symmetric fundamental dynamics.

Of course, empirical researchers don’t always need to infer their causal conclu-
sions from correlations alone. In practice they will standardly narrow down the
causal possibilities and simplify their inferential task by helping themselves to prior
causal knowledge, courtesy of common sense or the temporal ordering of variables.
So for example, in our initial example, they would quite sensibly have taken it as
given that temporally later examinations E results cannot cause earlier school type S
or earlier parental income P. However, as we have seen, this kind of assistance from
common sense or temporal ordering is by no means essential.

Philosophers sometimes emphasize how particular sets of correlations can leave
causal structure undetermined even given the bridge laws, as did the original S-P-E
correlations in our example, and how empirical researchers will standardly invoke
prior causal knowledge to resolve the indeterminacy.7 These points are of course
true, but they should not be allowed to obscure the mathematical fact that in such
cases richer sets of possible correlations would always suffice to fix causal order on
their own. (Whether reality will always provide such richer sets of correlation is of
course a further question, to be decided by the empirical facts rather than mathemat-
ical proof. We shall return to this issue at various points below.)

4 . C A U S A L S U F F I C I E N C Y
The points made so far might suggest the reductive idea that there is nothing more
to causal relations than the patterns of correlation from which they can be inferred
via the bridge principles. In effect, this would be to view the bridge principles as nec-
essary truths that encode the way that causal relations are implicit in correlational
structures.

I shall explore this idea further in the next section. But first an immediate issue
must be addressed. I have shown that the bridge principles can determine a causal or-
der given the correlations among a given set of variables. But this leaves it open that a
causal order so determined might be overturned if the set of variables were ex-
panded. This possibility clearly threatens the idea that causal relations are nothing
over and above the correlational patterns that imply them. After all, our aim is to an-
alyse the nature of real causal relations, not of apparent causal relations relative to an
arbitrary selection of variables.

This worry is by no means an idle one. Suppose that, in the way described in the
last section, the correlations among some fA, B, S, P, Eg determine:

DIAGRAM 4
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Despite this unique determination of a causal order by the correlations, it remains
perfectly possible that in reality P does not cause S, but rather both are effects of
some further G. (Imagine, not entirely implausibly, that parental income P per se has
no effect on school type S, but that both are effects of grandparental income G.) In
that case, the correlations among fA, B, S, P, Eg would remain just as observed, but
the bridge-principle driven conclusion that P causes S would simply be wrong, and
the true causal structure would be

However, while this is a real danger, it is significantly limited. To see why, note
that bringing in extra variables will not itself alter the correlations among the varia-
bles in some original set. For example, expanding the analysis by including G won’t
stop P being systematically correlated with S. At most, extra variables will screen off
correlations that weren’t screened off in the original variable set—with the result
that, if we now apply the bridge principles to the expanded set of variables, any such
newly exposed screening off will indicate that causal links presented as direct by the
original set are in fact only indirect causal links.

Now, indirect causal links are of two kinds—either one variable causes another
via an intermediary, or two variables have a common cause. In the first kind of case,
expanding our variable set will not really have overturned any causal conclusion,
since it will only have shown that some causal link proceeds via intermediaries, as
would in any case have been assumed. So it is only the second kind of case, where
the extra variable turns out to be a common cause of two variables in the original set,
that the casual verdicts delivered by the original correlations will be reversed.

This now shows that there will be no overturning of verdicts delivered by the
bridge principles as long as we have a causally sufficient set of variables, in the sense
of a set that does not omit any variables that turn out on expansion to be common
causes of variables included in the original set. And this now opens the way to the re-
ductive project once more. A revised reductive suggestion would now be that causal
relations are nothing over and above those patterns of correlation that imply them,
courtesy of the bridge principles, in any causally sufficient set of variables. (Would not
the need to specify causal sufficiency here render this suggestion inadmissibly circular
as a reduction of causation? But this specification can be finessed away. We can sim-
ply say causal relations are nothing over and above the patterns of correlation that
imply them in sets of variables whose verdicts are not overturned by the inclusion of
further variables.)
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5 . P R O B A B I L I S T I C T H E O R I E S O F C A U S A T I O N
The original probabilistic theories of causation, proposed in the middle of the twenti-
eth century by Reichenbach (1956), Good (1961-63) and Suppes (1970), were all
versions on this theme:

(5) An earlier X causes a later Y if and only if they are positively correlated
and this correlation is not screened off by any yet earlier Z.

But there are obvious drawbacks to this formulation. For a start, it appeals to tempo-
ral order in its analysis of causal order and thus abandons the search for an indepen-
dent explanation of why causal relations are asymmetric in time. Moreover, this
formulation is ill-suited to accommodate various complex causal structures, as when
there are two common causes of two correlated effect variables, with neither cause
therefore fully screening the correlation among the effects.

The regimentation of the bridge principles in the Bayesian network tradition
allows probabilistic theories of causation to bypass these two difficulties. As we have
seen, the bridge principles are capable of determining a causal order among any com-
plex set of correlated variables, and they do so without assuming any information
about the temporal ordering of those variables. This then opens the way for reduc-
tive theories of the kind suggested above, according to which there is nothing more
to causal relations than the patterns of correlation from which they can be inferred
via the bridge principles. (See, for example, Spohn 2001, Glymour 2004, Schurz and
Gebharter 2016 and Papineau 1992, 2001.)

Can this implicit reduction be transformed into an explicit analysis of causation?
Most of the writers just cited do not attempt this, but the theory offered by Daniel
Hausman in his Causal Asymmetries (1998) can be adapted for this purpose.
Hausman himself does not propose an explicit definition of causation in terms of
correlations because of the “failures of faithfulness” that I shall address in the next
section, but if we put that issue to one side for the moment, we can adapt his analysis
and say:

(6) X causes Y if and only if X is correlated with Y and everything correlated
with X is correlated with Y and something correlated with Y is not correlated
with X.

The basic idea behind this reduction is that the effects in correlated cause-effect pairs
are distinguished from the causes by having probabilistically independent sources of
variation, and correlated joint effects of common causes are distinguished from
cause-effect pairs by both having independent sources of variation.

If we make the assumption that effects do always have such independent sources of
variation, then the reductive claim (6) follows from the bridge principles (1)–(4). The
need to add this assumption of independent sources of variation to the bridge princi-
ples is a reflection of the point, made in the section before last, that while not every set
of correlations itself suffices for the bridge principles to determine a causal order, there
is always a possible expansion of that set of correlations that will suffice for this. As be-
fore, it is an empirical question whether reality will always provide such independent
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variation, not something that can be established by metaphysical analysis. We shall
come back to this issue in my final section.

6 . F A I L U R E S O F F A I T H F U L N E S S
Unfortunately, we cannot rest with this kind of probabilistic reduction of causation.
It focuses on the surface symptoms of causation, rather than its underlying nature.

One way to see this is to note that the causal claims analysed by this reduction will
leave us without answers to various questions of single-case causation. Suppose, as is
no doubt the case, that the bridge principles in conjunction with actual empirical corre-
lations establish that smoking causes lung cancer. Now suppose that Joe Bloggs smokes
and gets lung cancer. Did his smoking cause his lung cancer? It depends. Even if it is
true that “smoking causes lung cancer” in the sense inferred from the bridge principles
and the correlations, Joe’s genetic make-up might prevent cigarettes from harming him
and he might have acquired his lung cancer from asbestos exposure instead.

This shows that there must be more structure to causation than is captured by
the kind of causal claims analysed by the proposed probabilistic reduction. I shall be
proposing an account of this extra structure in what follows.

Associated with this point are doubts about the status of the bridge principles
themselves. The probabilistic reduction argues that they are necessities whose truth
falls out of the nature of causation. But it is not obvious that the bridge principles are
all true, let alone necessarily true.

All the bridge principles have been questioned in the literature. As it happens, it is
my view that the objections to the Causal Markov Condition are misplaced, and that
the truth of this condition does indeed fall out of the underlying nature of causation
(as I shall argue in section 9 below). But the Faithfulness Condition has a far less se-
cure status. Actual exceptions might be rare, for reasons shortly to be explained, but
even if it is generally true is by no means metaphysically guaranteed.

Let me first briefly indicate why I view objections to the Causal Markov
Condition as misplaced. Both of its corollaries, the Linkage and Conditional Linkage
Principle, have been queried in the literature.

The standard counterexamples to the Linkage Principle are time-series correla-
tions which point to no causal linkage, like the matched values of London bread pri-
ces and Venice water levels over the years. As a range of writers have pointed out,
however, the Linkage Principle can be qualified so as to exclude correlations with
this type of nonstandard time-series construction (Sober 2001; Hoover 2003; Zhang
and Spirtes 2014).

Then there are putative counterexamples to the Conditional Linkage Principle.
These are cases of correlations which supposedly fail to be screened off when causal
intermediaries are controlled for. Wesley Salmon’s pool balls (1984) and Nancy
Cartwright’s polluting factory (2002) are well-known examples. Here the standard
response is that the cases omit a full specification of the intermediaries and that that
the correlations would disappear if this were rectified.

A different kind of counterexample to the Linkage and Conditional Linkage
Principles involves nonlocal quantum correlations like those between measurements
on spacelike separated entangled particles (“EPR” correlations henceforth, after
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Einstein, Podolsky and Rosen 1935). I shall postpone discussion of such quantum
correlations until section 13 below.

Now for the Faithfulness Condition. The problem cases here involve a cause
influencing an effect via two separate pathways, one producing the effect and the
other preventing it, with the two influences cancelling out, and so leaving us with a
zero correlation between the cause and the effect. The classical example, due to
Hesslow (1976), involves birth control pills B exerting a direct positive influence on
the formation of thromboses T, but also working to prevent T by preventing preg-
nancies P which themselves operate as a positive cause of thromboses. If these two
paths of influence cancel out precisely, then B and T will end up quite uncorrelated,
with thromboses just as common among those taking birth control pills as those
who don’t. (This would be a counterexample to the simple Unlinkage Principle. But
similar counterexamples to Conditional Unlinkage can easily be constructed—for in-
stance, just imagine that some C is a common cause of both B and T.)

Cases like these would be clear violations of the Faithfulness Condition. B and T
are uncorrelated, even though causally linked. If we applied the bridge principles to
this case, we would conclude that the uncorrelated B and T are independent causes
of pregnancies P, since they are both correlated with it—which by hypothesis is not
the real causal structure.

Now such “failures of faithfulness” are clearly highly unlikely, given the way they
depend on an exact cancelling out of influences. Still, this is little consolation to
those defending a probabilistic reduction of causation. For that requires the
Faithfulness Condition to be a metaphysically necessary consequence of the nature
of causation. And cases like Hesslow’s, however unlikely they might be, just don’t
seem metaphysically impossible. It certainly doesn’t look as if there is anything in the
nature of causation to stop two causal paths cancelling out exactly and leaving us
with a null association between cause and effect. I conclude that we need to probe
deeper to understand the connection between the bridge principle and the underly-
ing nature of causation. (Before moving on, it is worth observing that, while exact
failures of faithfulness might be highly unlikely, and so only of abstract philosophical
significance, approximate failures of faithfulness are common enough in the real
world, and so a practical concern to those nonexperimental scientists who need to
start their investigations by using finite sample data to estimate correlations.)
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7 . S T R U C T U R A L E Q U A T I O N S
To get to the bottom of the connection between causation and correlation, we need
to switch to a different approach, namely the “structural equations” tradition that
played a central role in econometrics and sociometrics in the middle of the last cen-
tury. To revert to our earlier example, this tradition would have dealt with the covari-
ation of schools (S), examination results (E), and parental income (P) by positing a
set of linear equations like this:8

P ¼ eP (7.1)

S ¼ aPþ eS (7.2)

E ¼ bPþ cSþ eE (7.3)

In such a set of equations, the e-terms that appear only on the right-hand sides
are called “exogenous variables” and represent further influences beyond those
explicitly included in the study. The other variables on the right-hand side of each
equation are called its “independent variables,” and the variable on the left-hand side
its “dependent variable.”

A set of such equations is recursive if it can be ordered so that no term appears on
the right-hand side as an independent variable unless it has appeared in a previous
equation as a dependent variable. In such a case, the equation set will have a directed
acyclic structure. In our example, this would be:

The regression coefficients a, b, c attaching to the independent variables measure
the extent to which the dependent variables vary specifically in response to changes
in those independent variables. They capture how much, if at all, the dependent vari-
able “wiggles” when a given independent variable “wiggles” and the other indepen-
dent variables are held constant.

In our example, we supposed that examination results E don’t covary at all with
schooling S once parental income P is held constant. So then the regression coeffi-
cient c will be zero, and the equations will have the simpler structure:

P ¼ eP (8.1)

S ¼ aPþ eS (8.2)

E ¼ bPþ eE (8.3)

DIAGRAM 7
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I have now started representing sets of equations like (7) and (8) by directed acy-
clic structures—DASs. But note that this is a different kind of DAS from those con-
sidered earlier. Where the earlier DASs represented causal structures, these new
DASs simply represent the order in which variables appear in structures of equations
like (7) and (8).

It is both normal and natural, however, to interpret these new equational struc-
tures causally, and assume that one variable is a cause of another just in case it is an
ancestor of it in the structure of equations—that is, to take our new equation-DASs
also to be causal-DASs.

Still, it is not clear that anything said so far justifies such an interpretation. After
all, if the equations are just equations, what is to stop us rearranging terms so that the
dependent variables become independent and vice versa? For example, what is to
stop us rewriting the equations (8) as follows?

S ¼ e�S (9.1)

P ¼ 1

a
Sþ e�P (9.2)

E ¼ bPþ eE (9.3)

This would then give us this directed acyclic equation structure:

And, if we were to interpret this structure causally, it would now present S as a
cause of P, and P as a cause of E, and S as having no direct causal influence on E ex-
cept via P.

8 . I N D E P E N D E N T E X O G E N O U S T E R M S
Even so, an approach to causation in terms of structural equations has the resources
to meet this challenge. The key idea is that the ordering of variables in a set of equa-
tions can capture causal structure only if the exogenous variables are probabilistically in-
dependent. This requirement promises to decide between the alternative causal
hypotheses suggested by equations (8) and (9). If P causes both S and E, then the
exogenous terms in the former but not latter equations will be independent, whereas
if S causes P which causes E, then the reverse will be true.

This idea was commonplace among econometricians and sociometricians in the
middle of the last century. In this connection, note how the requirement of exoge-
nous independence is built into the use of structural equations as a tool for predic-
tion and explanation. Thus consider once more the equations which present school
type S as a function of parental income P:

DIAGRAM 9
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P ¼ eP (7.1)

S ¼ aPþ eS (7.2)

Given some specific value Pk for P, we would naturally use these eqautions to in-
fer that expected school funding is aPk. But note how this inference hinges on the
implicit premise that the extra variation in S is independent of what value of P we
have. That is why we can estimate S on the basis of knowing P even while being
quite ignorant of the value of es.

Observe how this kind of inference doesn’t work the other way around. Consider,
instead of (7.1–7.2), the rearranged

S ¼ e�S (9.1)

P ¼ 1

a
Sþ e�P (9.2)

If es was independent of P in the original (7.1–7.2), then e*P won’t be indepen-
dent of S in (9.1–9.2)—for the rearrangement implies that e*P ¼ �eS/a—and so
now we can’t infer that 1

a S will be the average value of P given some value of S. The
way P varies around 1

a S will be different for different values of S, and will depend on
how P itself is distributed. (For example, if the median of P is below the average, as
we would expect for parental income, then the expected value of P for positive S will
generally be less than 1

a S.)
In my view, the probabilistic independence of exogenous terms in recursive sys-

tems of structural equations holds the key to causal direction. This kind of indepen-
dence means that the values of the dependent variables are due to influences that
can be factorised into independent sources. The probabilistic independence of the
exogenous terms thus displays them as causally unlinked, while the dependence of
the other variables on factorizable influences manifests their status as effects.

So far I have illustrated the idea in a maximally simple case with just two nonexog-
enous variables. But the idea that causal structure requires independent exogenous
terms goes over to more complex cases. To illustrate, let us imagine, contrary to our
supposition so far, that schools S do after all exert an extra influence on examination
results E, in addition to any direct influence from parental income P. The relevant
equations would then be the earlier (7):

P ¼ eP (7.1)

S ¼ aPþ eS (7.2)

E ¼ bPþ cSþ eE (7.3)

DIAGRAM 7

The Statistical Nature of Causation � 13



If the sequence of exogenous terms is independent, then the values of P are fixed
by one set of factors eP, the values of S are fixed by P plus another probabilistically
independent set of factors eS, manifesting the way S is an effect of P and eS—and fi-
nally the values of E are fixed by the values of P and S (which are themselves now
correlated) and by yet another set of factors eE which are probabilistically indepen-
dent of both P and S. This last independence thus displays E as an effect of all of P,
S and eE.

The underlying idea, then, is that every dependent variable will have an associated
exogenous variable that is independent of the other variables it is dependent on. This
reflects the assumption, presupposed by the earlier analysis of causation (6) derived
from Daniel Hausman’s work, that effects will always have sources of variation that
are independent of their other causes. But now we have built this assumption into a
more structured framework that will prove better suited to deal with failures of faith-
fulness and with single-case causation.

I have been using linear regression analysis to illustrate the idea that causal struc-
ture might depend on independent exogenous terms. But the idea can happily be
generalised to other structures of deterministic equations. We needn’t restrict our-
selves to linear equations, nor to real-valued variables.

Suppose we have any set of variables X1, . . . Xn and exogenous terms, E1, . . . En,
possibly with values that might be dichotomous, or determinable, as well as quantita-
tive in some way; and suppose we have a set of recursive deterministic equations
over these variables of the form

Xi ¼ FðX1; : : : Xi�1; EiÞ (10)

Then in general, I say, it will be a requirement on these equations capturing causal
structure that the exogenous terms be probabilistically independent.

So I now propose the following requirement on causal structures:

(11) X causes Y only if it is an ancestor of Y in a recursive structure of deter-
ministic equations with independent exogenous terms.

In this section I have presupposed that all the variables within any causal structure
will be connected by deterministic equations. Quantum mechanics gives us reason to
doubt that this is true. In section 13 below I shall modify my analysis to accommo-
date quantum indeterminism within causal structures. But for the moment it will be
useful to continue with assumption of determinism.

9 . T H E B R I D G E P R I N C I P L E S R E C O V E R E D
The proposed connection between causation and structural equations casts a new
light on the bridge principles that underlie inferences from correlations to causation.
Instead of seeing the correlations as providing the substance of causation, as on prob-
abilistic theories of causation, we can now view them as offering indirect evidence for
the way variables feature in systems of causally adequate structural equations. On
this account, when we use the bridge principles to infer from correlations that X
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causes Y, we are in fact inferring that X is an ancestor of Y in a system of causally ad-
equate structural equations.

Crucial in this connection is a mathematical theorem that I shall call the call the
“Determinism-Independence-Markov Result.” Suppose as before that we have a system
of dependent variables X1, . . . Xn, with probabilistically independent exogenous vari-
ables, E1, . . . En, and recursive deterministic equations over these variables of the
form Xi ¼ F(X1, . . . Xi�1, Ei). Then the system will display this Markov property:

(12) Any variable will be probabilistically independent of every other variable
(apart from its descendants) conditional on its parents (where “parent” and
“descendant” signify relatedness in the DAS of the relevant equations). (Pearl
2000, Theorem 1.4.1.)

This result is obvious enough. Any two dependent variables that owe their values to
disjoint sets of exogenous variables will inherit their independence from the indepen-
dence of those exogenous variables. Putting it the other way around, two dependent
variables will be correlated only if in the equations one descends from the other or
they have a common ancestor. Moreover, if a variable does so descend from another,
or shares a common ancestor with it, then any correlation between them will disap-
pear if we hold fixed its parents, because any residual variation in the two variables
will then again derive from disjoint sets of independent exogenous variables.

Note that as it stands this Determinism-Independence-Markov Result says noth-
ing about causes as such. It is a straightforward mathematical claim about the joint
probability distribution imposed on all the variables in a system of deterministic
equations by the requirement that the exogenous terms be independent. Still, when
we combine this theorem with the requirement (11) that causation implies recursive
equations with exogenous independence, then the theorem does imply the Causal
Markov Condition—any causal structure will satisfy the Markov property—and
therewith the Linkage Principle—correlated variables in a causal structure must be
causally linked—and Conditional Linkage Principle—if correlated variables in a
causal structure remain correlated when we control for some further variable, then
they must be linked by a route that does not involve that further variable.

So the condition on causation (11) proposed in the last section can account for
the use of the Linkage and Conditional Linkage Principles to infer causal conclusions
from correlational premises. It is noteworthy, though, that this analysis does not sim-
ply posit that causal structures will satisfy these principles, as did the probabilistic the-
ories of causation considered earlier. Rather it derives this from the proposed
connection between causation and systems of recursive equations with independent
exogenous variables.

It is also noteworthy that the Faithfulness Condition does not follow from condi-
tion (11). That is just as it should be. As we saw earlier, it is highly implausible to
suppose that the Faithfulness Condition is built into the metaphysical nature of cau-
sation. True, we can generally expect variables that are linked in a system of equa-
tions with exogenous independence to be correlated. The equational links plus the
background independence will generally lead to the variables co-varying. In certain
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special cases, however, a specific cancelling-out of coefficients will mean that equa-
tionally linked variables display overall no correlation.

Recall Hesslow’s example in which birth control pills affect thromboses both di-
rectly but also via preventing pregnancies which themselves conduce to thromboses.
Within the structural-equations framework, this set-up might be realised by the fol-
lowing equations:

B ¼ eB (13.1)

P ¼ aBþ eP (13.2)

T ¼ bBþ cPþ eT (13.3)

Now in this case, and indeed in all cases with this equational structure, there will
be no correlation between B and T if the coefficients cancel out exactly and a þ bc
¼ 0.

From the perspective I have now adopted, however, this kind of case is no longer
a problem. I am now assuming causal structures depend on systems of equations
with exogenous independence. And Hesslow’s example poses no challenge to this as-
sumption. The above equations portray the way that B is a causal ancestor of T via
two separate paths. That the coefficients conspire to stop this fact displaying itself in
a correlation, as would normally happen, does nothing to undermine the claim that
B is doubly a causal ancestor of T. It just shows that the Faithfulness Condition is
only a reliable rule of thumb, and not a necessary truth.

So the Faithfulness Condition now falls into its rightful place, as something that
empirical researchers can generally rely on, but is in principle open to exceptions.
There is nothing in the nature of causation to guarantee that probabilistic indepen-
dencies should not arise by a cancelling out of parameters. This would be a freakish
chance, but it is not built into the nature of causation. Unlike the Causal Markov
Condition that takes us from correlations to causal links, the converse Faithfulness
Condition that says that causal links display themselves in correlations is only deliv-
ered as a reliable rule of thumb.

1 0 . A R E D U C T I O N O F C A U S A T I O N
In the last two sections I have argued that causally connected variables are related by
systems of deterministic equations with probabilistically independent exogenous vari-
ables, and I have used this to clarify the status of the Linkage and Unlinkage
Principles.

But does the connection work the other way around? If the covariation of some
variables can be captured by recursive deterministic equations with probabilistically
independent exogenous variables, does this imply that the causal ordering of those
variables must match this equational ordering?

If this were so, then we could uphold the following reductive analysis of
causation:

16 � The Statistical Nature of Causation



(14) X causes Y if and only if it is an ancestor of Y in a recursive structure of
deterministic equations with independent exogenous terms.

However this simple reduction will not work. There are systems of recursive equa-
tions with exogenous independence that do not reflect causal structure. If we are to
develop an explicit reduction of causation, we will need to take account of these and
show how to put them to one side. In this section I shall briefly indicate how this
might be done.

Failure of faithfulness yields one kind of case in which equations with exogenous
independence do not match causal structure. Consider Hesslow’s example once
more. The cancelling-out involved means that we end up with birth control pills B
and thromboses P being probabilistically independent. So, in addition to the equa-
tions (13) representing the real causal structure, we will also have this system of
equations with exogenous independence:

B ¼ eB (15.1)

T ¼ e�T (15.2)

And this would then discredit the proposed reduction of causation (14), since it
would imply that B and T must be causally unlinked, which by hypothesis is false.

We also find violations of (14) with certain joint probability distributions involv-
ing limited sets of variables. For example, if some correlated X and Y have a bivariate
normal distribution, then regressing Y on X will give us an equation where Y is a
function of X and an independent exogenous term. But so will regressing X on Y.
Yet only one of these will correspond to causal structure. The same point applies to
larger sets of mutually correlated variables in multivariate normal distributions.

However, there is a way to exclude these unwanted cases and so uphold a version
of the explicit reduction of causation (14) proposed above. The key is that, in all the
unwanted cases, the requirement of exogenous independence will be violated if we
seek to expand the set of equations to accommodate other correlated variables.

Consider what happens in the Hesslow example if we try to expand the equations
(15) to include a variable for pregnancy P (which, remember, is correlated with both B
and T). If we hold fixed the probabilistic independence of B and T, then such a system
of equations with exogeneous independence throughout would need to take the form:

B ¼ eB (15.1)

T ¼ e�T (15.2)

P ¼ fBþ gTþ e�P (16)

DIAGRAM 10
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But the trouble now is that this augmented set of equations won’t have indepen-
dent exogenous terms throughout. In particular, the term e*T won’t be independent
of e*P, given that in truth T depends causally on P. (The term e*T will in effect need
to compensate for how P in fact varies in ways that are independent of T.)

Let us say that a system S of equations with exogenous independence is expand-
able if, for any further variables correlated with those in S, there is a larger system of
equations covering those further variables that also satisfies exogenous independence
and which has S as a subsystem.

The equations (15) displaying birth control pills B and thromboses P as indepen-
dent are not so expandable, since any larger set of equations embedding (15) and
also covering pregnancy P will violate the requirement of exogenous independence.

Let me now turn to mutually correlated variables in multivariate normal distribu-
tions. In these cases too we can dismiss the causally misleading equations on the
grounds that they are not expandable. Note here that we can usefully view the over-
supply of equations with exogenous independence in multivariate normal distribu-
tions as a corollary of the way that the bridge principles sometimes fail to determine
a unique causal order from a limited set of correlations. Earlier, in section 3, I
pointed out that, given such underdetermination, a wider set of possible correlations
would always suffice to fix a unique causal order for the variables at issue. If we now
assume that such further correlations will always exist when we have mutually corre-
lated variables in multivariate normal distributions, we can infer that only one of the
original sets of equations over the originally correlated variables will be expandable,
namely the one whose equational order matches the causal order fixed by the wider
set of correlations. (If some other among the original set of equations were expand-
able, then by the “Determinism-Independence-Markov Result” (12) the so-expanded
equations would yield correlations that required the bridge principles to fix a match-
ing causal order, contrary to the hypothesis that the wider set of actual correlations
plus the bridge principles do not fix that casual order.)

In line with these examples, let me now hypothesise that the requirement of ex-
pandability will always be violated by systems of recursive equations with exogenous
independence that do not match causal order. If this is right, and the unwanted sys-
tems of equations can always be dismissed in this manner, then the way stands open
to the following explicit reduction of causation:

(17) X causes Y if and only if it is an ancestor of Y in an expandable recursive
structure of deterministic equations with independent exogenous terms.

On this account, a structure of causes and effects is nothing over and above a struc-
ture of variables in an expandable system of deterministic equations with indepen-
dent exogenous terms. In effect, this suggested analysis of causation combines a
regularity theory of causal covariation with a statistical account of causal direction. We
start with a set of deterministic equations. These specify how certain variables covary
deterministically in a lawlike way.9 But this covariation is itself undirected. The co-
variation specified by the equations would remain the same if we reordered the equa-
tions to switch which sides the variables appeared on. The causal direction is then
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added to the covariation by the requirement that the exogenous terms be probabilis-
tically independent of each other.

1 1 . S I N G L E - C A S E C A U S A T I O N
The proposed reduction analysis of causation now promises a better hold on single-
case causation. (Did Joe Blogg’s smoking actually cause his cancer?)

A natural first thought is that we can now say that some particular fact Ca is an ac-
tual cause of Ea if the recursive equations relating C and E imply that, in the actual
circumstances, Ea would not have occurred without Ca. However, we will then need
to address the issue, familiar from David Lewis’s attempt at a counterfactual analysis
of actual causation, that there are cases of actual causation without counterfactual de-
pendence, due to pre-emption, trumping, and so forth.

Fortunately, we can appeal here to the wealth of recent work which uses “causal
models” to address this issue (Hitchcock 2020). These causal models posit directed
relationships, standardly portrayed by arrows, between actual and possible values of
variables displayed by particular situations. The existing literature then aims to for-
mulate recipes that will allow us to read off from the models which events some
given result was actually caused by or counterfactually dependent on.

The analysis of this paper complements this literature. While much progress has
been made on the way causal models can help analyse actual causation and counter-
factuals, it is very unclear what features of the real world these models answer to. In
particular, there is no agreed account of what the arrows in the models represent
(Beebee and Menzies 2020). To a large extent these relationships of asymmetric
causal dependence are simply taken as given. The present paper offers a way of filling
this lacuna. I would suggest that we should take there to be an arrow between two
variables in a causal model just in case one is a parent of the other in an expandable
system of deterministic equations with exogenous probabilistic independence.

1 2 . “C C A U S E S E ”
It will be illuminating at this point to return briefly to the question of the meaning of
generic causal claims of the form “C causes E” (“smoking causes cancer”, “birth con-
trol pills causes thromboses”, . . .). The analysis so far argues that claims of this form
should be read as saying that C is an ancestor of E in a recursive system of structural
equations. And I have shown how we can infer such claims, reliably if not infallibly,
from correlations by using the bridge principles.

We might well wonder why we are so interested in claims of this form, given that
they will standardly leave us in the dark about single-case dependencies. As observed
earlier, knowing that smoking causes cancer won’t decide whether Joe Blogg’s cancer
was actually caused by his smoking, or even whether it counterfactually depended on
it. To know these things we’d need to about all the other equation-ancestors of can-
cer and about what values they had in Joe Blogg’s case, and just knowing that
“smoking causes cancer” is likely to leave us very much in the dark about this.

In truth, we are interested in claims like “smoking causes cancer” for a quite differ-
ent reason. Even though they tell us little about single-case causal relations, they can
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be a highly informative guide to action. It is relevant here that generic “C causes E”
claims will generally come with numbers attached. They will indicate how much more
probable C rather than not-C renders E. And this of course is just what we need to
know when we are deciding whether to do C in pursuit of E.

This issue deserves far more analysis that I can give here, but at first pass we can
understand quantitative generic causal claims as showing, on weighted average across
the contexts consistent with the agent’s information about their situation, how proba-
ble it is that doing C will realise a sufficient condition for E and not for not-E.
Viewed like this, quantitative generic causal claims can thus tell agents how much
reason they have to do C if they want E.

This now casts an extra light on the meaning of generic causal claims. I am cur-
rently committed to reading “C causes E” as saying that C is an ancestor of E in a
system of generic casual equations. But note that not all such cases will be ones in
which C on average makes a positive probabilistic difference to E. It might be an an-
cestor and yet make a negative probabilistic difference to E, or indeed make a zero
probabilistic difference, as in faithfulness failures.

So now there is an issue about the consonance of my analysis with everyday us-
age. It is not obvious that we would ordinarily say that “C causes E” when C has no
net influence on E, as in failures of faithfulness, and moreover it would seem posi-
tively misleading to say “C causes E” when C lowers the probability of E. Still, I do
not propose to pause on these terminological points. I have identified the crucial re-
lation of ancestry in equations with exogenous independence, and shown how this
relation can be reliably though not infallibly evidenced by correlational patterns. I
have then indicated how this relation might help us to understand a number of fur-
ther causal relations, including actual causation, counterfactual dependence, and
making a positive, zero or negative causal difference on weighted average across a
type of context. Analysing how all these different causal relations map onto everyday
usage is a task for another time.

1 3 . Q U A N T U M M E C H A N I C A L I N D E T E R M I N I S M
The reduction of causation I have proposed so far assumes that effects are always de-
termined by antecedent facts—values of dependent variables Xi are deterministic
functions F(X1, . . . Xi�1, Ei) of the independent variables X1, . . . Xi�1, and the exog-
enous variables Ei. At first sight this might seem inconsistent with the indeterministic
nature of the world revealed by quantum mechanics.10

But let us not be too quick. Note that my reduction does not imply that every-
thing is determined, only that effects are. Note also that it does not require that, at ev-
ery time earlier than an effect, facts obtain that determine that effect, only that all
effects be determined by facts that obtain by the time they occur.

This leaves it open that many of the facts that determine an effect might them-
selves be the outcome of chancy quantum processes. The multiple influences that
contribute to the exogenous variables could still be the outcomes of chancy quantum
processes, and moreover the values of those exogenous variables might only become
determinate shortly before the time of the relevant effect. That would be perfectly in
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line with the idea that the values of dependent variables are always deterministic
functions of probabilistically independent exogenous variables.

So my deterministic analysis does leave room for indeterminism outside causal
relations, so to speak. Still, this does not fully answer the worry. What rules out inde-
terminism entering into causal structures themselves? Suppose I make a bomb that is
set to explode if a radioactive substance decays by a certain amount in a certain inter-
val. If the bomb explodes, then my action will have caused the explosion. But not ev-
ery event in the causal chain from my action to the explosion will have been
determined by the time it occurred. In particular, the relevant radioactive decay will
have been a purely chancy matter.

We can expect many causal structures to share this form. Take the stock example
of smoking and lung cancer again. Perhaps the causal route from smoking to cancer
proceeds via the chancy breaking of certain bonds in certain molecules. Again, this
will mean that one of the steps in the causal chain running to smoking from cancer
will not have been determined by the time it occurs.

At first pass, cases like these call for structural equations of a different form. In
place of equations like

E ¼ FðC; eEÞ (18)

we will need

ChanceðEÞ ¼ F
�

C; eChðEÞ

�
(19)

If event E is undetermined until the time when it occurs, then the variables
appearing on the right-hand side of the equation (19), including all influences
packed into the exogenous variable eCh(E), will fail to determine a definite value for
E. Instead they will fix only that E has a certain chance of occurring.

This change of equational form matters significantly to the arguments of this pa-
per. Recall the crucial earlier Determinism-Independence-Markov Result (12) that
implied that variables involved in structural equations with exogenous independence
will satisfy the Markov Condition, and so in particular that correlated variables will
become conditionally uncorrelated when we control for intermediaries. This result
depended not just on the probabilistic independence of the exogenous variables, but
also on the determinism of the equations. In consequence, recursive structures of
equations some of which only fix chances rather than definite values for their depen-
dent variables, as in (19), are no longer guaranteed by the independence of their ex-
ogenous variables to satisfy the Markov Condition.

A real-life illustration of this abstract possibility is provided by the so-called
Einstein-Podolsky-Rosen (“EPR”) correlations (Einstein et al. 1935). In these cases,
an initial state, plus further background factors including the setting of instruments,
fixes chances for various quantum measurements made on two wings of an experi-
ment involving spatially separated particles. Quantum mechanics predicts, and exper-
iment confirms, that these measurement outcomes will be correlated in a way that
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cannot be screened off by any features of the initial parent state, even if the back-
ground factors relevant to the two measurements are probabilistically independent.

We can represent this kind of set-up by the pair of equations:

ChanceðE1Þ ¼ F
�

C; eChðE1Þ

�
(20)

ChanceðE2Þ ¼ F
�

C; eChðE2Þ

�
(21)

And now the relevant point is that the nondeterminism of these equations leaves
room for the outcomes to coordinate themselves within the freedom, so to speak, left
open by their nondetermination. When we have two equations determining two out-
comes E1 and E2 as functions of some common cause C and two independent exoge-
nous variables eE1 and eE2, then the independence of the last two terms forces the
conditional independence of E1 and E2 given C, as in the earlier Determinism-
Independence-Markov Result. But when the only outcomes fixed by the equations
are chances for E1 and E2, then there is room to evade this conditional independence.
And the EPR correlations show that, once this room is made available, nature some-
times makes use of it.

Still, it is noteworthy that correlations with this non-Markov nature are effectively
unknown outside the physics laboratory. It requires very carefully arranged experi-
mental circumstances to display the characteristic features of the EPR correlations. I
take it that this is due to the fact that, in the absence of such careful experimental
arrangements, the parts of separated entangled systems that might display EPR-type
correlations will quickly interact with different macroscopic systems that are not spe-
cifically designed to amplify the values of the entangled variables in concert. Because
of this, any spatially separated macroscopic events that are influenced by different
parts of entangled quantum systems will vary independently, once we hold fixed the
common sources of those quantum systems.

And this then means that for practical purposes any structural equations with
macroscopic dependent variables in which chancy quantum events play a role can be
represented as deterministic after all. For we can now effectively rewrite equations of
the form

ChanceðEÞ ¼ F
�

C; eChðEÞ

�
(19)

as

E ¼ F
�

C; eChðEÞ; eE

�
(22)

where the final eE is a sort of “dummy variable” representing the way in which the
chance of E resolves itself into actuality. As long as we are dealing with cases, unlike
the carefully arranged EPR set-up, where different chancy variables will macroscopi-
cally resolve themselves independently, we can assume that these extra chance-
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realizing dummy variables in different equations will be probabilistically independent
of each other.

We can usefully describe equations like (22) as “pseudodeterministic.”
Dependencies that appear probabilistic only because they omit the totality of deter-
mining factors are often termed “pseudo-indeterministic.” But contrast, while equa-
tions like (22) have the appearance of determining the effect variable E, this conceals
the way that the eE terms on the right-hand side are an expression of the fact that
nothing determines E until it occurs.

Still, as long as these dummy chance-realizing variables in a system of structural
equations are probabilistically independent, then the equations will function just like
a system of deterministic equations with exogenous independence, with the result
that we can uphold the same connection between causes and correlations as before.
The Causal Markov Condition with its correlative Linkage Principles will be a deduc-
tive consequence of the analysis, while the Faithfulness Condition and its correlative
Unlinkage Principles can be expected to hold except in special cases of faithfulness
failure.

So I now propose the following adjusted analysis of causation to accommodate
the involvement of chancy events in causal structures:

(23) X causes Y if and only if it is an ancestor of Y in an expandable recursive
structure of deterministic or pseudodeterministic equations with independent ex-
ogenous terms.11

One consequence of this adjusted analysis is that the EPR relationships will not
themselves qualify as causal. The equations governing the EPR outcomes are not
pseudodeterministic. If we tried to put these equations into the pseudodeterministic
form (22), the “dummy” exogenous variables representing the undetermined mani-
festation of the outcomes on the two wings would not come out as probabilistically
independent.

Denying causal status to the EPR relationships seems independently reasonable.
Even though the two spatially separated outcomes are connected by an unscreened-off
correlation, there is good reason to deny that either causes the other. After all, the rela-
tionship between the two wings is symmetrical, and moreover there is no possibility of
controlling the result on one wing by manipulating the other. As to the production of
the spatially separated outcomes by their common source, there is again reason not to
count this as the production of distinct joint effects by a common cause. After all, their
covariation cannot be screened off by values of the source, as normally happens with
joint effects of a cause. Given this, we will do better to regard the coordinated out-
comes as together comprising a single effect resulting from the source, rather than two
distinct effects with independent sources of variation.

If we do take this line, then the EPR correlations become counterexamples to the
Linkage Principles. These Principles said that a correlation always signifies a causal
link, and a conditional correlation signifies a causal link that doesn’t pass through the
condition. But the EPR correlations, which remain even after we condition on the

The Statistical Nature of Causation � 23



source, do not signify a direct causal link between the two outcomes, nor even an in-
direct causal link resulting from a common cause.

Now, as before, this violation of the Linkage Conditions is no problem for practi-
cal nonexperimental researchers. As I have observed, we can be confident that we
will not meet any observable EPR correlations outside the laboratory setting. So
practical researchers can continue to assume the Linkage Conditions in inferring
causes from correlations.

Still, one might wonder where the EPR correlations leave my claim that my pro-
posed analysis of causation has the Causal Markov Condition and hence the Linkage
Conditions as a deductive consequence. If my analysis does indeed imply the Causal
Markov Condition and therewith the Linkage Conditions, and the EPR correlations
show the Linkage Conditions are not generally true, then that looks bad for my pro-
posed analysis.

A crucial point here, however, is that the Causal Markov Condition says specifi-
cally that variables in any causal structure will satisfy the Markov Condition, not that
all variables whatsoever will—and on my developed analysis causal structures are
specifically expandable recursive structures of deterministic or pseudodeterministic
equations with exogenous independence. The EPR correlations are thus not covered
by this result, since, as we have seen, the equations governing the outcomes on the
two wings in the EPR set-up cannot be put into the form of pseudodeterministic
equations with probabilistically independent exogenous variables.

This does now mean, however, that my original Conditional and Unconditional
Linkage Principles (1) and (2) were too generally formulated. As I originally formu-
lated these principles, they specified that causal implications follow from any correla-
tions between variables. We can now see that this was too ambitious. The EPR
correlations show us that the relevant casual implications are only guaranteed if we
are dealing with variables which are governed by deterministic or pseudo-
indeterministic equations with independent exogenous variables. This qualification
to the Linkage Principles might be of no practical importance, given that no EPR-
type correlations ever present themselves to nonexperimental researchers, but it is
needed if we want to keep the logic straight.12

1 4 . T H E T E M P O R A L A S Y M M E T R Y O F C A U S A T I O N
One aim of this paper was to offer an explanation for the temporal asymmetry of
causation. Given that this asymmetry has no counterpart in the fundamental dynam-
ics of the physical world, we would like to be able to understand how it emerges.

The analysis I have developed puts me in a position to offer such an explanation.
On my account, causal structures are expandable recursive systems of deterministic
or pseudodeterministic equations in which every variable is descended in a certain
way from a set of probabilitically exogenous variables. Now in reality, this causal or-
dering will line up with temporal ordering, in the sense that any variable that is causally
prior to another according to my analysis will always in fact precede it in time. The var-
iables on the right-hand sides of expandable structural equations with exogenous inde-
pendence always turn out, as a matter of fact, to be temporally prior to their
dependent variables.
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So far this does little more than restate the temporal asymmetry of causation. I
might have offered an analysis of causation in other terms, but I am still simply pre-
senting it as a datum that causes so analysed will never succeed their effects. What
we would like, however, is some further explanation of why that should be so.

The points made in the last section suggest that we might be able to appeal to
quantum processes to meet this challenge. It is natural to suppose that the exogenous
terms in expandable structural equations are the result of quantum superpositions re-
solving themselves into determinate outcomes when they interact with macroscopic
systems. Given this, we can attribute their probabilistic independence to the typical
unconnectedness of the processes giving rise to quantum “collapses.” If we put the
specially coordinated measurements of EPR-type experiments to one side, then
quantum collapses will generally occur in interaction with unrelated macroscopic sys-
tems, and we can take it that any “collapses” they prompt will display probabilistic
independence.

While this now offers a quantum mechanical account of the probabilistic indepen-
dence of exogenous variables, it does not yet in itself take us to the temporal asym-
metry of causation. We want to explain why the exogenous variables in structural
equations are always temporally prior to the variables that depend on them. Viewing
them as the outcomes of “quantum collapses” might account for their probabilistic
independence from each other. But it is not immediate obvious why this should
mean they must temporally precede the further variables that causally depend on
them.

It is relevant, however, that apparent quantum “collapses” themselves occur asym-
metrically in time. The superposition comes first, and is then followed by the col-
lapsed state. Different interpretations of quantum mechanics of course offer different
accounts of the mechanics of quantum state “collapses.” Still, it is a constraint on all
these accounts that they should respect the way that such manifest collapses occur
asymmetrically in time, with the determinate outcomes always occurring later that
the quantum superpositions that precede them. There is more to say here, but this
asymmetry of apparent quantum collapses thus promises to account for the way ex-
ogenous variables in structural equations always temporally precede their dependent
variables.

At the beginning of this paper I mentioned the Lewisian programme of account-
ing for the asymmetry of causation in terms of the “asymmetry of over-
determination.” This asymmetry consists in the fact that any time will contain many
independent traces of past events, but scarcely any of future events. This is a real
enough phenomenon, but from my perspective it is not prior to the asymmetry of
causation. As I see it, the “asymmetry of overdetermination” derives from the asym-
metric nature of causation, not the other way round.

To see why, note how my account implies that the joint effects of any cause will
be generally be correlated with each other. Two variables that are both correlated
with a common ancestor in a system of deterministic or pseudodeterministic equa-
tions with exogenous independence will be probabilistically dependent, putting un-
likely faithfulness failures aside. By contrast, nothing in my account implies that two
variables with a joint descendant will generally be correlated. This means that the
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joint effects of any cause will tend to occur in concert, in a way that joint causes will
not. Any given cause will thus tend to be followed by a plurality of different events,
each of which probabilistically indicates it. By contrast, any given effect will typically
be correlated only with one identifiable precursor. This thus allows us to account for
the “asymmetry of overdetermination” as an upshot of the way that causation is itself
asymmetrically orientated in time.13

1 5 . C O N C L U S I O N
I have argued that the causal structure of the world arises from the way certain varia-
bles are governed by deterministic or pseudodeterministic structures of equations
with exogenous independence. This analysis allows us to understand a number of
features of causation, including our ability to infer causes from correlations, the
grounds of actual causation and counterfactual dependence, and causation’s tempo-
rally asymmetry.

Perhaps I should make it clear that that this account is intended as an a posteriori
analysis of the nature of causation, not as any kind of conceptual analysis of the con-
cept of causation. I have not sought to derive my analysis a priori from the way we in-
tuitively think about causation, but rather have offered it as the best explanation for a
range of a posteriori facts about causation, most centrally for the way causation char-
acteristically displays itself in correlational patterns.

Some might feel inclined to object to my analysis that they can perfectly well con-
ceive of one event causing another without the help of any exogenous variables satis-
fying probabilistic independence requirements. Consider, for example, a world with
nothing else in it where one perfectly hard ball bumps into another and “causes” it to
move (cf. Ehring 1987; Sosa and Tooley 1993, Introduction.) My response is that
we might be able to conceive of such a world, but we would be conceiving a meta-
physical impossibility (Papineau 1988). Given that my a posteriori analysis makes no
appeal to the concept of causation, I am happy to allow that we can coherently apply
that concept to imaginary situations that fail to satisfy the analysis. But the resulting
description, while conceptually consistent, will be metaphysically contradictory. It
will describe a set-up that violates the a posteriori nature of causation. In truth, causa-
tion depends on expandable systems of equations with exogenous independence,
and will be absent from any world that lacked such complexity.

So it is no objection to my analysis that we can conceive of causes without inde-
pendent exogenous variables. But there is a related worry. My analysis does at least
require that all causal relations in the actual world are embedded in expandable equa-
tions with exogenous independence—and this itself might seem an overly strong
and implausible claim. How can I be confident that every single effect in the world
has a plurality of causes one of which is probabilistically independent of the others?

I take the points made in the last two sections to provide an answer to this query.
No observable feature of the world is insulated from the impact of chancy quantum
processes. This is not to deny that some prior circumstances do make others over-
whelmingly likely and so come very close to determining them. In particular, we
humans often go to great pains to arrange things to ensure that some specific out-
come will follow. But absolute determination of any event by another at a temporal
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distance is an unattainable ideal. In principle, freaky quantum events can always dis-
rupt any outcome. Variables representing the absence of these events will thus fea-
ture among the causes of any observable outcome, and will thus provide the requisite
exogenous independence, for the reasons given in the last section.

What if we conjoin all the influences that contribute to the outcome under con-
sideration into one big determining cause? Then there will be no plurality of varia-
bles influencing the result, and so no question of whether one is probabilistically
independent of the others (Hausman 1998, 215). But that is not to the point. The
central thesis of this paper is not that all ways of grouping the causes of an effect will
present it as a function of probabilistically independent factors, but rather that there
is always some way of so grouping its causes, which will then constitute it as an effect
of those factors. In my view the underlying quantum nature of reality gives us every
reason to accept this thesis.14

N O T E S
1. “Variable” can be understood as referring to a symbol on paper or in some other medium, to a function

with abstract numbers as values used to model some worldly quantity, or to the worldly quantities them-
selves. My focus throughout this paper will be on the last-mentioned worldly quantities. Similarly, I shall
understand “equation” as standing for lawlike worldly relationships between such quantities, and not for
any symbolic or abstract numerical representation thereof.

2. Lewis’s original explanation was given in his “Counterfactual Dependence and Time’s Arrow” (1979).
Elga (2000) showed that Lewis’s treatment was insufficiently sensitive to thermodynamic considerations
and therefore wrong to view later traces as strictly determining earlier events. Loewer (2007) remedied
this deficiency but simply assumed without any further analysis that the “asymmetry of over-
determination” (in the sense of “the predominance of local macro signatures of the past (but not of the
future)” 2007, 317) is built into the asymmetry of thermodynamics.

3. By “correlation” I shall mean any case of nonindependent probability distributions of two variables
(school type/examination results, pollution/death rate, . . .) instantiated by some type of individual
(schoolchildren, towns, . . .). I shall assume throughout that these are lawlike population patterns, as op-
posed to finite sample associations, and that they hold within some background field.

4. The more familiar coinage is directed acyclic “graph” (DAG). I have adopted “structure” instead to stress
that my concern is with worldly relationships between worldly quantities, and not with the means by
which we might represent these relationships. In such a causal DAS, an arrow means that the variable at
the head of the arrow is a direct cause of the variable at the tail. The arrows in such a DAS are required
to be acyclic in the sense that a variable can only be a causal ancestor of another if it is not also a descen-
dant of it. Throughout this paper I shall assume that variables never reciprocally cause each other. When
some coarse-grained variables seem to leave this as a possibility—for example, might not happiness cause
health, and health also cause happiness?—then we should switch to time-lagged versions of these varia-
bles, as in healtht1, healtht2, healtht3, . . . .

5. The Causal Markov Condition says: In any directed acyclic structure of causal relationships, any variable
will be probabilistically independent of every other variable (apart from its own causal descendants) con-
ditional on its causal parents. (Cf. Spirtes et al. 1993, 54). A “structure of causal relationships” should be
understood to include the causal relationships between any set of variables selected from reality. The
Causal Markov Condition is only plausible if it is further understood to be required of such a structure
that no common causes of included variables be omitted (for reasons to be elaborated in the next sec-
tion). So understood, and supposing there are no further requirements on causal structures beyond these
(but see footnote 12 below), the Linkage Principle (2) follows because any two causally unlinked varia-
bles can feature as parentless in a causal structure, and so must be uncorrelated, while the Conditional
Linkage Principle (3) follows because, in the absence of any links between the two variables that don’t in-
volve fXg, controlling for fXg would screen off the correlation.

6. The Faithfulness Condition can be stated as: There are no more unconditional and conditional indepen-
dencies than are required by the Causal Markov Condition. (Cf Spirtes et al 1993, 56.)
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7. Thus Christopher Hitchcock’s Stanford Encyclopedia of Philosophy article on “Causal Models” (2020) has
a section (“4.4 The Identifiability of Causal Structure”) about the way correlations plus bridge principles
can underdetermine causal structure, but omits to mention that such indeterminacies are always in princi-
ple resolvable by further possible correlations.

8. Let us now assume that our variables, including school type S, can be measured on some quantitative
scale, for example by level of school funding. I shall also simplify by assuming that all variables are mea-
sured from their means. Remember that, as explained in footnote 1, my “equations” are lawlike relation-
ships between worldly quantities, not symbolic or abstract representations thereof, in line with my use of
“variable” and “directed acyclic structure.”

9. I take no view on the nature of lawlike deterministic connections in this paper. Everything I say is consis-
tent with all the standard accounts of nomological necessity.

10. It is a moot point whether quantum mechanics is ultimately indeterministic. Collapse theories say so, but
Everettianism or Bohmianism deny it. We can bypass this issue here, however, as both Everettianism and
Bohmianism still need to account for the apparent indeterminism that occurs when quantum superposi-
tions interact with macroscopic systems. In line with this, I shall understand quantum indeterminism as
covering whatever happens in such interactions.

11. My earlier points in sections 11 and 12 about actual causation, counterfactual dependence, and the signif-
icance of generic causal claims for rational action all presupposed determinism. The admission of indeter-
ministic causes means that these analyses need to be re-examined. That will have to be a project for
another time. My hope is that the requirement of pseudo-indeterminism will mean that the earlier analy-
ses can be smoothly extended.

12. Did I not argue earlier in footnote 5 that the Causal Markov Condition implied the original Linkage
Principles (1) and (2) in full generality? But at that stage we were assuming that nothing is required of
causal structures beyond including all common causes of included variables, and given this the unquali-
fied Linkage Principles did indeed follow from the Causal Markov Condition. But now that we are
restricting causal structures to expandable systems of equations with exogenous independence, the
Causal Markov Condition and hence the Linkage Principles will no longer apply to EPR quantum
correlations.

13. Loewer (2007) does aim to explain, in terms of the “past hypothesis,” why we have “records” of the past
but not the future. But his account fails to explain why we have many separate such records, which is
what he assumes when he explains the direction of causation in terms of the asymmetry of
overdetermination.

14. I would like to thank Thomas Blanchard, Julien Dutant, Toby Friend, Totte Harinen, Jenn McDonald,
Davide Pigoli, Henry Taylor, and two anonymous reviewers for helpful comments on earlier versions of
this paper.
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